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An exact solution of the boundary-contact problem of the diffraction of a plane wave at the junction of two elastic plates set at 
an arbitrary angle is constructed by Malynzhinets' method. © 1997 Elsevier Science Ltd. All rights reserved. 

Problems of the diffraction of sound by elastic semi-infinite plates and their joints, situated in an acoustic 
medium, have been considered for a long time in mechanics and acoustics, be~nning with the work of 
Malyuzhinets [1-311 and Lamb [4], in which an exact solution of the problem of the diffraction of a plane 
sound wave by a thin elastic haLf-plane were obtained for the first time. The problem was investigated 
in detail in [5-8] in the case of rectangular geometry (two plates unfolded into a plane or joined at a 
fight angle, a T-shaped junction, a rectangular volume, and so on), when the Wiener-Hopf method 
can be used. If the angle between the plates is not a multiple of a right angle it is not possible to obtain 
a solution by the Wiener-Hopf method and it is necessary to invoke a different mathematical technique, 
namely, the Malyu~,hinets method, developed to solve problems of the diffraction and radiation of sound 
in angular regions of arbitrary aperture angle [9, 10]. For an angular region, the boundaries of which 
are absolutely rigid and slippery and covered with thin elastic plates performing only longitudinal 
vibrations, an exact solution of the problem of plane sound wave diffraction was obtained by Tuzhilin 
[111. 

Below, using the general theory developed for angular regions of arbitrary aperture and for boundary 
conditions containing derivatives of arbitrary order [ 12-14], we present an exact solution of the problem 
of the diffraction of a plane harmonic sound wave at the angular joint of thin elastic plates which are 
in unilateral contact with acoustic medium and are described using fifth-order differential operators 
(Kirchhoff plates). Section 1 is devoted to a correct formulation of the problem, which should provide 
a unique solution satisfying the reciprocity principle. In Section 2, using the Malyuzhinets--Tuzhilin 
teelmique, the diffraction problem is reduced to a system of functional difference equations in 
Sommerfeld integral transformants, representing the sound pressure inside the acoustic medium filling 
the angular region. In Section 3 a general solution of the problem is obtained which contains eight 
undetermined constants and which satisfies the Helmholtz equation, the boundary conditions on the 
plates and also the conditions on the edge (the latter is understood to mean the conditions for there 
to be no fictitious .,~und sources on the edges). These constants are found from the conditions for no 
"parasitic" waves to exist, which would disturb the conditions at infinity (Section 4), and from the contact 
conditions which specify the kinematic and dynamic modes in the region where the plates are joined 
(Section 5). The uniqueness of the solution of the problem formulated in Section 1 and its corresponding 
reciprocity princip]te are discussed in the Appendix. 

1. F O R M U L A T I O N  OF THE P R O B L E M  

Consider two thin semi-infinite plates fastened along their edges so that in a cylindrical system of 
coordinates (r, (p, z) in which the z axis lies along the joint line, the external sides of the plates coincide 
with the surfaces ~p = __.O (Fig. 1). The plates are assumed to be homogeneous, have densities p_+ and 
thicknesses h±, and, generally speaking, do not coincide with one another (here and henceforth quantities 
with plus and minus subscripts relate to the upper or lower plate, respectively). The sector Icp I < • is 
filled with an acoustic medium of density p and velocity of sound c; outside the plates there is a vacuum. 
A plane harmonic sound wave 
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~--~o,e,,) 
Fig. L 

Po (r, tO) = Po exp(-ikr cos(g~ - g~o)), k = to 
C 

(1.1) 

is incident from infinity on the angular joint of the plates normal to the common edge and at an angle 
to the plane ~ = 0, wherep0 is the amplitude and to is the angular frequency; the time dependence 

is taken in the form exp(--/~t). The problem consists of determining the field of the total sound pressure 
p(r, q~) everywhere inside the acoustic medium. 

From a mathematical point of view the problem reduces to constructing a solution of the two- 
dimensional Helmholtz equation 

~ r 2 + -  + +k 2 r ~rr ~" p(r,~0)=0 (1.2) 

inside the plane angular sector I q~ I < O, 0 ~< r < +**, with the boundary conditions 

l 
L ±  ' r 

in which 

l 1 (  0 l o, L± '~r' r ~-"~0' =:i: ~ r 4 - X  4 ~--~+V±, ×±= p±h±-~'~) 

where x± are the wave numbers of flexural oscillations of the plates in a vacuum, and D± are the 
stiffnesses of the plates for bending. At the points where the plates are joined r = 0, the function 
p(r, 9) must remain bounded and continuous with respect to the angle 9, and its first derivatives have 
only integrable singularities 

iiml p(r, ~p)l= const < +~o, limlr grad p( r, cp)l=O (1.5) 
r--90 r-o0 

Conditions (1.5), which will be called the conditions on the edge, arise from the requirement that 
there should be no fictitious sound sources on lines of geometrical and material singularities of the 
boundaries [15]. 

The conditions at infinity in problems of the diffraction of plane waves in angular regions can be 
formulated as the requirement for the difference between the total fieldp(r, 9) and the geometrical- 
acoustics fieldps(r, 9) to decrease if there is some absorption, at least as small as desired, in the medium 
[10], i.e. 

li+mlp(r,q~)-pg(r,~0)l=0, Vg, Imk>0  (1.6) 

The field p~r, ~0) in general may consist of an incident wave and its reflections from the boundaries of 
the region; it is constructed using the laws of geometrical acoustics and can be assumed to be known [16]. 

The kinematic and dynamic modes in the region where the thin plates are joined are described using 
the contact conditions [6] 

K+p+ K~,p = 0, n = 1,2,3,4 (1.7) 
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K+p=lim(H~"(O---~lr--,o( ~,~r) r ~(r,+_O)+H~.(ff---;)p(r,+_dP)) 

where H~nn(0/0r) are polynomials and m = 1, 2. Conditions (1.7) contain the normal components of 
the displacement vectors 

~±(r) = :~ oj2p----- ~ (r,_O) 

of points of the plates, the angles of emergence of the plates from the joint O± = _(O - ~(0) ) ,  the 
moments M± = ___D±~(0) and the normal components of the forces F± = -D±~"±'(0) (the primes denote 
derivatives with respect to the r coordinate). It follows from the uniqueness theorem (Appendix) that 
the nature of the relationships between these quantities in contact conditions (1.7) must not contradict 
the overall requirement 

U÷ + U_ I> 0 (U± = D± Im(~:(0)~'(0)-~±(0)~:"(0))) (1.8) 

which arises from the energy conservation law (the bar denotes complex conjugation). Moreover, for 
any pair of parameters qh and (~ having the meaning of angles of incidence, the following relation must 
be satisfied 

J+ ((Pl,(P2) + J_(tPI,tP2) = 0 

(J_+ ((Pl, (P2) = D± (rl± (~o~, ~02 ) - 11+ ((P~, (P2)) 

(11+ (x, y) = ~± (0, x)~'+"(O, y) - ~'+ (0, x)~'(O, y)) 

(1.9) 

which imposes one more constraint on the relation between the limit values of the parameters 
characterizing the plate joining conditions (here, for convenience, the corresponding value of the angle 
of incidence 9o is indicated as the second argument of the functions ~±(r, 9o)). Condition (1.9) is a 
consequence of the reciprocity principle (see the Appendix). 

It is obvious that the correct formulation of the problem of diffraction by the corner joints of thin 
elastic plates must imply that the contact conditions (1.7) are formulated appropriately and should not 
contradict the general relations (1.8) and (1.9). It can be shown by direct substitution that the type of 
contact conditions most often encountered, namely 

~_+ (0) = 0, ~'+ (0) = 0 (rigid damping) (1.10) 

~_+(0)=0, M_+ =0  (hinged joint) (1.11) 

M± = 0, F_+ = 0 (free edge) (1.12) 

~_+(0)=0, O ÷ - O  = 2 0 ,  D÷~7(0)=D_~'_'(0) (rigid joint) (1.13) 

convert relations (1.8) and (1.9) into identities. Hence, the use of any of these guarantees that the 
corresponding botmdary-contact problem has only one solution, and this solution does not contradict 
the reciprocity principle. 

2. C O N V E R S I O N  TO F U N C T I O N A L  EQUATIONS 

We will construct the solution of the problem in the form of a Sommerfeld integral [9] 

_P0 p(r, (p) - 2rti S exp(-ikrcos a)S(tx + tp)dot (2.1) 

which, as can be shown by direct substitution, is a particular solution of the Helmholtz equation (1.2) 
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for an arbitrary choice of the function S(¢z)--the transformant of the Sommerfeld integral. The contour 
of integration y consists of two symmetrical loops ~/± in the complex plane o~ (Fig. 2), the ends of which 
are arranged such that integral (2.1) converges. It is assumed that there is not a single singularity of 
the function S(¢x + q~) inside the loop ?± when I 'P I ~< 4). It must be emphasized that the possibility of 
representing the required solution by integral (2.1) can be justified for a wide range of diffraction 
problems, which, in the final analysis, arises from the equivalence of the Malyuzhinets integral 
transformation and the Laplace transformation [17]. 

The transformant S(0t) will be sought in the class of meromorphic functions, having a single simple 
pole with unit residue in the band rI0 = {or: I Re (z I < 4)} at the point ot = 9o and which satisfies the 
condition I S((z + q,) - S(--- .o) I ~ 0 uniformly with respect to tp as Im ot --* --_** which ensures the 
separation of the specified incident wave (1.1) as r ~ + oo and the satisfaction of conditions (1.5) on 
the edge, respectively. Note that, using the transformation S(0t) --¢ S(tz) + const, under which the 
Sommerfeld integrals are invariant, by an appropriate choice of the constant one can always endeavour 
to satisfy the relation 

S(+ ioo) = -S(-ioo) (2.2) 

which will also be assumed below. 
Substituting integral (2.1) into the boundary conditions (1.3) we obtain a system of two integral 

identities 

S exp(- ikrcosa)L±(a)S(a+~)da=O,  0 ~  r<+oo (2.3) 
Y 

in which the functions L±(a)  = L±(-ik cos a, --ik sin a) can naturally be called the symbols of the 
boundary operator; using (1.4) they can be written in the form 

L± (ix) = +ik s i n  c t ( k  4 c o s  4 a - x 4 ) + v+_ (2.4) 

As we know [9, 17], the necessary and sufficient condition for integrals (2.3) to vanish is that the odd 
part of the integrand should be equal to a certain trigonometric polynomial 

L+_(ct)S(tx + ~ )  - L+(-tx)S(-c~ + ~)  = 2 sin (z ~ C,~ COS n - I  13t 

n= l  
(2.5) 

with arbitrary coefficients C~, which are independent of tx (by making the replacement of variable q = 
- ik  cos a this assertion can be reduced to the generalized Liouville theorem). The orders of the 
polynomials AT+ are determined by the behaviour of the required solution and the symbols of the 
boundary operators as Im et -~ ~; hence, in the case considered we must have N± ~< 5. From the 
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Fig. 2. 
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equations of system (2.5) as Im ct -> .0 it follows that, without loss of generality, the constants C~ 
can be equated to zero, since they are proportional to the sum of the limit values of S(+i**) + S(-/**), 
equal to zero by vh:tue of the normalization condition (2.2). Thus, the satisfaction of boundary conditions 
( 1.3 ) by integral (2.1) has been reduced to a system of two functional difference equations (2.5), in which 
the right-hand side may contain eight arbitrary constants C~ (n = 1, 2, 3, 4). 

3. SOLUTION OF THE FUNCTIONAL EQUATIONS 

To solve the functional equations (2.5) we will use a method which was proposed and used for the 
first time in [10] when considering the diffraction by a wedge with impedance boundaries. The method 
consists of converting the initial system with variable coefficients to a system with constant coefficients 
by making the replacement 

S(a) = W(tz)S 1 (tx) (3.1) 

where Sl(ct) is a new unknown function, while the function ~F(ct) is an auxiliary function and is chosen 
as a certain particular solution of system (2.5) with zero right-hand side. Then, for Sl(a) the problem 
reduces to a system of inhomogeneous functional equations with constant coefficients 

s~(a+,l,)-sm(-u+¢,) = f±(a) 
4 f±(a) = 2sin t~ y~ C~ cosn_l a 

/~ (a)~l'(a__. @) .=~ 

(3.2) 

The equations for the function ~F(a) can also be reduced to a system with constant coefficients if we 
introduce its logarithmic derivative Y(cc) = W'(tt)PI~(ct) 

Y(o~+O)+Y(-o~+O)=+ R~-(°O R±(ct) = L± (T-ct) (3.3) 
R±(~)' L±(+~) 

It can be verified that the functions R±(ct) are identical with the reflection coefficients when a plane 
wave, incident at a glancing angle o~ is reflected from an infinite plate [18]. Hence, the numbers ct = 
7-tXn, where tXn are; the zeros of the symbols of the boundary operators, have the meaning of the Brewster 
angles (generally speaking complex) for plates which form boundary surfaces: the reflection coefficient 
of a plane wave incident on them at these angles is zero. It can be seen from (2.4) that the functions 
L ±(00 may be written as trigonometric polynomials of the fifth degree in sin ct, and hence in the complex 
plane Gt all the roc,ts of these functions can be expressed in terms of five roots, which lie in any strip of 
width it. We will c]~oose the strip I Re ¢t I ~< 7r/2 as this strip, while the roots which belong to it will be 
denoted by ct = -7-~xn (n = 1, 2 , . . . ,  5). It is obvious that the numbers 0] can be found using the relations 
On = arcsin ~1], Re 0] ~ (-n/2, rd2), where 1~ are the roots of the characteristic equations 

,=v 4 
The solution of ~stem (3.3), which has no zeros and no poles in the strip H0, is constructed in explicit 

form using a Fourier transformation of the function Y(ct), which leads to the algebraic problem of 
determining its tr~msformants. As a result, the following representation can be obtained for the auxiliary 
function 

~l'(ct) = ~ .  (ct)~_(ct) 

5 ~ + + ~ ± + 

't '±(ct)=11 ~ .  0 t + O + 7 - s n 0 ,  ~ .  a + - 7 + s , 0 , ,  
n = l  

± =sign(Re0~), n 1,2 ..... 5 S n 

(3.5) 

where ~a,(a) is a special Malyuzlfinets function [10], for which, when deriving (3.5), the following integral 
representation was used in [19] 
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¥o(ct) = exp - tch(xt / 2)sh(2tO) 

The function ¥o(ct) has no zeros or poles in the strip I Re 0t I< it / 2 + 20, and hence expression 
(3.5) is in fact a function which possesses a similar property in the strip ri0. The fact that the function 
~P(ct) satisfies the homogeneous system (3.5) can also be shown by direct substitution if we write the 
following expansion for the system coefficients 

5 
L~(O0 =+ik 5 1"I (sinot_+sin0~) 

n - - - I  

and we take into account the properties of the Malyuzhinets function [10]. 
The form of (3.5) depends on the arrangement of the numbers 0~ in the complex plane, more 

accurately on the signs of their real parts. Hence, we need to consider the arrangement of the roots of 
Eq. (3.4) in the complex plane [3- Analysis shows that for real coefficients its roots lie symmetrically 
about the imaginary axis, and it has one and only one purely imaginary root with a negative imaginary 
part. For example, for a thin steel plate in water, the roots of the equation are situated approximately 
at the points of intersection of a circle of radius 1131 = I b+_ 11/5 with rays emerging from the point 13 = 
0 and making angles with the negative part of the imaginary axis that are multiples of 2g/5 (Fig. 3). For 
other combinations of the plate and acoustic medium parameters (for example, steel and air) the 
approximate expression for the roots and their arrangement in the complex plane may be different, 
but for the theory developed here it is only important that two roots of the characteristic equation (3.4) 
(in the notation employed these are the roots [3~,4) should have a negative real part, and the roots 
[~],s should have a positive real part. For the real coefficients of the equation the sign of the real part 
of the numbers is indefinite since they are pure imaginary. Henceforth, when constructing the 
solution of the system of functional equations (2.5), it will be more convenient to assume that the num- 
bers [3~ nevertheless have a certain small, but non-zero, positive real part. This will be the case, for 
example, if we make the coefficients be complex: be = I b_+ lexp(i arg b+_), where 0 < arg be ~ 1. In 
the final formulae we can revert to pure real coefficients by letting arg b+ tend to zero• 

• • + • • 4 -  - -  n - - 1  With these assumptions, for the parameters s~ m (3.5) we obtain s~ = (-1) (n = 1, 2 . . . . .  5), 
which completely defines the form and properties of the function ~F(a). In particular, as Im (x --> oo, 
in view of the asymptotic properties of the Malyuzhinets function for large and complex arguments [10, 
20] 

we have 

Fig. 3. 
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I ~,(2 ) ~t (3.6) W(a) = ~ exp(-illotsign(Im aDO + o(1)), I1 = 2-'~ 

We will now construct the function Sl(a ). The general solution of system (3.2) must be constructed 
from the particular solution of the inhomogeneous system and, possibly, the general solution of the 
corresponding homogeneous equations [21]. The particular solution of the inhomogeneous problem, 
analytic in the strip II0, is found using a Fourier transformation as 

A ( a ) = A + ( a ) + A  (a) (3.7) 

The integrals A±(a) converge absolutely, since, in view of estimate (3.6), the funetionsf±(~) decrease 
more rapidly than exp(--gl Im 13 l) as Im 13 -> --+ **. As Im a ~ __. ~, the function is described by the 
asymptotic formu]la 

A(Ix) = + 4~  exp(+il.tO0 ÷/*" S exp(ip.[~)(f+ (1~) + f_ ([~))d[~(1 + o(1)) (3.8) 
- -  ioo 

which can be obtadned if in the integrands of the integrals A_+(a) we replace the tangent function by 
the two leading te:rms of its expansion as Im a ~ - ** and take into account the fact that the functions 
f±(13) are odd. The function A(a) can be continued into the exterior of the strip 170 either directly, using 
the integral formula (3.7), or using the functional equations 

A(o~ + q))-  A ( - a  + q~) = f+ (Or) (3.9) 

which follow from (3.2). 
The function A(a) has no poles in the strip II0, which follows from the convergence of the integrals 

A_+(a) in this strip. Hence, in order to obtain a pole in the solution at the point a = ~ we introduce 
into consideration the meromorphic function 

I.t cos(ttq~o ) (3.10) 
o(cx, 9o) = sin(ga) - sin(t.tq~ o) 

which has unit residue at the point a = tp0 and at the same time is a solution of the homogeneous system 
(3.2) (this can be proved directly). The function 

S2(a ) = °(a' t$°) t- A(a) (3.11) 
'~'(~o o ) 

will then be a solution of system (3.2) with the required singularity when a = ~ .  
It follows from (3.8) and (3.10) that as Im a ~ ** the function S2(a) decreases as O(exp(--gl Im a I)), 

which, taking into account the asymptotic form (3.6), ensures that the product "P(a)S2(a) is bounded 
in the neighbourhood of an infinitely distant point in the complex plane a. On the other hand, by 
construction, the function u/(a)S2(a) has only a single pole inside the strip II0 situated at the point a 
= q~0, and has a residue equal to unity. Hence, by substituting the function S2(a) into (3.1) as the function 
Sl(a) we obtain the required solution of the system of functional equations (2.5), possessing the required 
analytic properties. 

The homogeneous equations (3.2) also have other solutions which differ from the function o(a, 9o), 
which can be divided into two types---meromorphic and integer (the latter are simply linear combinations 
of cosines cos(~tn((t-~)) (n = 0, 1, 2, . . . ) )  [21]. The solution of the homogeneous system (3.2) remains 
its solution after adding or subtracting the solutions of the homogeneous equations, and also after 
multiplying or dividing by these solutions. However, its analytic properties are then changed: poles either 
appear or disappear and the behaviour in the neighbourhood of an infinitely distant point becomes 
different. It can be; shown that one cannot supplement the function S2(a) with any other solutions of 
the homogeneous equations either additively or multiplicatively without disturbing its decrease as Im a 
--.> 0o or without introducing into the strip II 0 poles that do not correspond to the postulated conditions. 
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Thus, the expression 

S((g) = tl/(ot)S2(ot) (3.12) 

gives the required solution of the functional equations in the most general form (the function ~F(a) is 
defined by (3.5) while S2(a) is defined by (3.11)). It contains eight undetermined constants C±n (n = 
1, 2, 3, 4). For arbitrary values of these constants, integral (2.1) with transformant (3.12) is a solution 
of the Helmholtz equation (1.2) everywhere inside the angular region I 01 < cb, satisfies the boundary 
conditions (1.3) and (1.4) on its sides, separates the incident wave (1.1) (in the "illuminated" part of 
the space I q~ - % I < x), and is also a bounded and continuous function at the point r = 0. For the 
value of the sound pressure on the rib, as a simple consequence of the asymptotic forms (3.6) and (3.8) 
and the Malyuzhinets formula [22] 

lim (r, ~o) = iPo(S(i~) - S(-i~)) 
r---)O 

we can write the accurate representation 

(3.13) 

~im(r' q~) - "0v® ~.~)( W---~0 ) 
l +ioo 1 

80 ~ exp(ig~)(f÷(~)+ L(~))d~ 
-i** 

which is independent of the direction in which the observation point tends to the corner point. 
The constants Cn in the general solution are found from the remaining conditions: the conditions 

at infinity (1.6) and the contact conditions (1.7). 

4. THE POLES OF THE TRANSFORMANT AND 
THE CONDITIONS AT INFINITY 

We will consider the behaviour of integral (2.1) as r ---> +**. By continuous deformation the contours 
¥± can be converted into two parallel contours F(_n), passing along the lines Re a = --.n in the complex 
plane a (Fig. 2). By choosing these contours such that they are shifted slightly (as small as desired) into 
regions where the condition Im cos a < 0 is satisfied (shown hatched), we obtain integrals which tend 
to zero as r ---> +0. since their integrands tend to zero at all points of the integration contours F(--.n). 
During the deformation the poles of the function S(a + ~p) may intersect, if they fall inside the regions 
bounded above and below by the contours 7_+, and on the right and left by the contours F(_n). If among 
these there are poles which are situated in the unhatched parts of the region indicated, then in the 
estimate of integral (2.1) terms that increase exponentially as r---> +0- appear as residues in these poles, 
which leads to a violation of the condition at infinity (1.6). Hence, only those poles of the transformant 
S(a) which are situated in the strip 1I = {a: I Re a I ~< ~ + @} can affect the satisfaction of the condition 
at infinity. Those which lead to the occurrence of terms which increase as r ---> +.o must be eliminated 
from the solution found (these poles will henceforth be called "forbidden" poles). 

We will now consider the poles of expression (3.12). The poles of the function o(a, ~ )  (see formula 
(3.10)) form two families 

{Cpo + 4jO 
0Ej= 20_¢P0+4jO,  j = 0 , + l , + 2  .... (4.1) 

The position of the poles of these families in the complex plane depends on the value of the angle 
of incidence ~ ,  and among these there is a pole a = ~ ,  corresponding to the incident wave (1.1). The 
residue in this and the remaining poles of the families (4.1) contain no constants C-+n and make the 
contributions 

p~ (r, ~p) = P0 W(ccj ) c°s(l'tcP° ~ ) exp(-ikrcos(aj - q~)) (4.2) 
~(q~0)cos(~tai ) 

These contributions are identical both in phase and amplitude with plane waves reflected from the 
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sides of the region (the ampfitude factor in (4.2) can be converted to reflection coefficients or their 
products in the case of multiple rereflections, which may occur in narrow angular regions • < rd2, using 
the well-known functional properties of Malyuzhinets functions in exactly the same way as was done 
for impedance boundary conditions in [16]). Hence, all the poles of the function o(og 90) turn out to 
be permi~ible; being incident in the strip 17 they lead to separation of the residues which describe the 
waves of geometrical acoustics when estimating the integral (2.1) far from the line along which the plates 
are joined. 

We will write the functions ~_.(a) in (3.5) as 

(4.3) 

• ( 
~u,7(a) = ~/ .  a + O + - ~  

It follows from (3.5) and (4.3) that the poles of the function ~P(a) coincide with the poles of the 
functions ~Peq(a) when q = 1, 3, 5, and with their zeros when q = 2, 4. As we know [10], the Malyuzhinets 
function V®(a) when a = -+Ohm, where Ohm = ~(2m - 1)/2 + 20(2n - 1) (n, m = 1, 2, 3 . . . .  ), has zeros 
if m is odd and has poles if m is even. Hence, the poles of the function tP(a) can be found from the 
relations 

- O  - g / 2 + g0~ + ann ' 

-q~ + rc / 2 - g0q + an, ' 

- n / 2 + XOq + anm 

• + n 12 - ZOq + a.. ,  

1 for q=1,3,5, m = 2 , 4 , 6  .... 

X= -1 for q=2 ,4 ,  m=1,3,5 .... 

n = 1, 2, 3 .... (4.4) 

Before analysing the arrangement of the poles of the function ~P(a) in the complex plane, we will 
show that the function A(a), which is given by (3.7) and occurs in the expression for the transformant 
(3.12) in terms of tlae function S2(a), introduces no new poles into the solution, and all the singularities 
of the function S(a) are exhausted by the poles of the functions o(a,  9o) and iF(a). 

In order to show this we will compare the analytical properties of the functions tP(a) and ~(a) ffi ~P(a)A(a). 
By construction (see Section 3) these functions are analytic in the strip I-I0 and, correspondingly, having no poles 
in this strip, are solutions of the functional equations 

G_(a)U/Ca + 0 ) -  ~ (-a)Ud(-a +0)  = 0 

4 
/.~ ( a ) ~ ( a  + O )  - / _ ~  ( - a ) f ~ ( - a  _+ q~) = 2 sin a Y C + cos  n-t a 

n=l 

(4.5) 

(the coefficients L±(,~) are described by (2.4)). The functions ~F(a), f~(a) are continued into the exterior of the 
strip H0 by means of relations (4.5). For example, in the strip 1-I1 ffi {a: • < Re a ~ 30} these functions can be 
found from the formulae 

Ud(a+20)= L + ( - a - e ) u d ( . a )  ' ael-lo 
L+(a+~) 

1 4 

Both in this and the other case the poles of both functions in the strip H1 coincide with the zero of the same function 
L+ (a + O). We can s:imilarly compare the singularities of the functions ~F(a), ~2(a) in any other strip in the complex 
plane a and show that their poles coincide (although the residues in these poles may be different). Hence it follows 
that, despite the fact that the function A(a) is meromorphic (this can be shown, for example, using its integral 
representation (3.7), by continuing it into the exterior of the strip H0), each pole necessarily coincides with some 
of the zeros of the function ~F(a) and, as a result, the function A(a) introduces no new poles different from (4.4) 
into the product ~F(a)A(a) and correspondingly into the function S(a). 
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We will determine which of the poles of the function W(a) can fall within the strip II. We first note 
that the poles corresponding m ~> 3 in (4.4) lie outside this strip, an d hence the analysis can be confined 
to the cases m = 1, 2. It can further be shown that when q = 1, 3, 5 not one of the poles of family (4.4) 
falls within rl, which is due to the presence of a positive real part in the numbers 0~. As a result, it 
turns out that only poles of family (4.4) corresponding to q = 2, 4 and m = 1 can be situated inside the 
strip considered. The number of poles in II depends on the aperture of the angular region ~,  which 
determines the shift between poles with different values of n: the smaller the value of the parameter 

the closer the poles to one another and the greater the number of them that can lie inside H. 
Bearing in mind the signs of the imaginary parts Im 0~ < 0, Im 0] > 0 (see Section 3), it can be 

shown that of all the poles situated in the strip H, the forbidden poles, i.e. those the residues of which 
lead to an increase in the solution as r ~ +oo and to a violation of the condition at infinity (1.6), will 
be the poles which belong to one of the families listed below 

0~ + z : + ~ + 4 n ~ ,  p = l  [-0~ - n - ~ -  4n~, p = 5  

• - n - 3 ~ - 4 n O ,  p = 2  =~ 0 2 + n + 3 ~ + 4 n ~ ,  p = 6  (4.6) 
= I : : i  + <,,+ 4,,,,,, , ,=+ '  °tYPn i O ~ , - + - 4 n + ,  p = 7  

[ 0~ - 3*  - 4n+, p = 4 [ - 0  4 + 3+ + 4n*, p = 8 

n = O , l , 2  ..... Np 

(the number of poles in a family with numberp is equal to N. + 1 and depends on the particular values 
of the parameters • and Re 0~,4). The residues of integral (~.1) in the remaining poles of the transfor- 
mant S(a) from the strip II tend to zero as r ---) +** and do not violate the conditions at infinity. 

In order to formulate the conditions which ensure the required behaviour of the solution as r ~ +**, 
we will first consider a simpler case when the aperture angle between the plates satisfies the inequality 

> rd2. There can then be eight poles inside the strip rl, namely 

C t = * - 0 q ,  * + g + 0 q , - * - g - 0 q , - * + 0 q ,  q = 2 , 4  

of which the following four will be forbidden 

(4.7) 

In order to ensure the correct behaviour of the solution as r ~ +** we need to equate the residues 
of the function S(a) in the poles (4.7) to zero. Since these poles are poles of the function W(a), the 
corresponding conditions can be written as the conditions for the function S2(a), which is the factor 
after W(a) in the general solution (3.12), to vanish, which, using (3.11), gives 

o(a~o,~Oo) / V(~po)+ A(aYpO) = 0, p = 1,3,5,7 (4.8) 

It can be seen that conditions (4.8) have the form of linear algebraic equations in the unknown 
constants C~ (n = 1, 2, 3, 4). In the complete system of eight equations, which is constructed in this 
investigation and which can be conveniently written in matrix form 

EC = g 

c=(c?,cLc;,cLc?,G,c ,cz) r, 

I E~t E~ El~ E L E~ E~2 
E= E~, e~2 E~+3 E~4 E2, E22 

i ~ : : : : 

g = (gl,g2 ..... g8) r 

e?4 
E5 e5 

(4.9) 

the first four rows of system (4.9) correspond to conditions (4.8). For the first four dements of the vector 
g,.by (4.8) we obtain 

g, =-ff(ap/,~P0)/W(cP0), p=1,2,3,4 
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The elements of the first four rows of matrix E are derived from representation (3.7); here one must 
take into account, that .the poles at,~ . . . .  lie outside the strip II0, and for the .functi°n A ((z) it is necessary 
to use expressions obtained by analytical contmuatmn into the corresponding parts of the complex plane 

In addition, when writing the final formulae we can remove the auxiliary assumption that a small 
positive imaginary part is present in the coefficients be in the characteristic equations (3.4), which was 
made from considerations of convenience when constructing the general solution of the problem (see 
Section 3). When taking the limit as arg b+ ---) 0 the poles of the integrands in integrals (3.7), related 
to the zeros of the functions Le (13) at the F~oints 13 = -7--0~, reach the integration contour, which leads 
to the occurrence of additional semiresidue terms. The following formulae can then be obtained for 
the elements of the first four rows of the matrix E 

= Q~ (~ + 0~) + X + ctg ~ (~t + 0~ • +i.. _ I~)3Q+ (l~)dl 3 El. ( z  " 0 2 " ' ~ ' ~  ~ ctg(~ Ut+0~ 
) 80  -i** 

E~ = X~ tg(l(a;  + 0 ~ - 0~-)) + ~-~_!**'~ i +i** tg(-~(= + O~ - ~))Q~(~)dI 

E~ n =-Qn+(O~) + X,+ ctg(~ ( 0 ~ - 0 ~ ) / - i  +;**~-~_!.. ctg(~(0~ + 13))Qn + (~)d13 (4.1o) 

i +i** 
E~~ = - X :  tg(-~ (0: +0~-))- ~-~_L t g ( l ( 0 :  +I3))Q: (15)d15 

E~+~ = X~ tg (~-0~" + 0 i ) / + - -  f tg (n+Oi +f3) O+~(f3)ctf3 
) 80_/** 

/ i + i~  

i +i** 
E~" n = - X  + tg(la (0~ " + 0 4 ) ~ + - -  ~ tg(l't (-04 +[3))Q+(~3)d~ 

k2 ] 8q)_~. \ 2  

E 4n = -Q~ (-O'4 ) + X~ ctg( ~ ( O-~ -04) "~ + "2"~i +i**f 

Q~(I3) = 2sin~eos n-I ~ x + _ I.t sin0~ cos n-I 0~ 
L~(13)tp(~_+q~), n - ~ "  /_~(:F0~)~p(:F0~5:q~ ), n= l ,  2, 3, 4 

All the integrals i~n (4.10) are taken in the sense of the principal value at the points I~ = gOT which 
lie on the integration contour. These integrals converge absolutely as 13 ---> -+i**, since the function tP(Qt) 
has the estimate (3.6) as Im et --~ _+**. The matrix E acquires certain symmetry properties if the plates 

+ .6 which form the angle are the same. Then L+(~t) = L_(-ct), 0 ,, = 0~, ~P((x), Q n(-~) = -Q-n(13), )f+~ = 
- ~ ,  which leads to the relations 

+EL=o, +EL--o, 2, 3, 4 

We will now consider the case when the aperture angle of the region satisfies the condition q~ < x/2. 
Then additional poles, which differ from those described by (4.7), appear in integral (2.1) inside the 
unhatched half-strip (Fig. 2); they all belong to the families (4.6). It is important, however, that this 
should not lead to additional conditions imposed on the residues of the transformant at these poles. 
It can be shown that if the constants Cn are chosen from conditions (4.8), this will automatically ensure 
that the residues of the function S(a) will also vanish at those additional poles which occur inside the 
unhatched parts of l~he complex plane 0t on changing from the case (I) > rd2 to the case • < ~2. 
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For example, supj~ose ~4 < • < ~/2. Then, in addition to the poles (4.7) two more poles become forbidden: 
at the point a ffi od40 and a = ods0. However, it turns out that at these points the functions from (3.11) take tho 
same values as at the points a = c ~  and a = o ~  namely 

A(af40) = A(a~0), A(a~0) = A(aTf0 ) 

which ensures that the residues S(a) at the poles ~4o and O~so are zero if the residues at the poles d30 and dr0, 
respectivelY, are equal to zero. Note that the equalities for the function o (a, ~ )  arise from the elementary properties 
of trigonometric functions, while the equalities for the function A(a) arise from the well-known properties of the 
Malyuzhinets function and the functional equations (3.9), which it satisfies. 

We will calculate, for example, the value of the function A(a) at the point a = ~s0 = 30 - 0¥ By making the 
replacement a -* a + 20 in the first of Eqs (3.9), we obtain the expression 

A(a + 30) = f÷ (a + 2O) + A ( - a -  O) 

which, using the second equation of the same system, can be written as 

A(a+ 30) = f+(a+20)-f_(a)+A(a-O) 

The substitution a ffi -0~, taking into account the fact that the functionf_(a) is odd, and also the identity 

f÷ (20 - o~ ) = o 

which follows from the fact that one of the Malyuzhinets functions in the function ~4(30 - 0~) vanishes (see 
representation (4.3)), leads to the formula 

A(a~) = L(o4)  + A(-O4 -o) 

where the right-hand side is~n.one other than A(o~70), by virtue of the second equation of system (3.9). In a similar 
way we can derive the second of the above relations for the function A(a). 

We can similarly verify that the solution of the problem in which the constants C~ are chosen using the four 
conditions (4.8), remains correct not only when n/4 < • < rd2 but also when ~6 < • < n/4. There is obviously no 
need to check this property again later since it reflects the analytical nature of the dependence of the solution of 
the diffraction boundary-value problem on the parameter O: the solution obtained for a certain non-zero range of 
values of this parameter (here n/2 < • < ~) can be continued analytically into the whole remaining range of values 
of this parameter. From thephysical point of view, the fact that the residues are equal to zero at all the remaining 
poles (4.6) merely denotes that these residues describe all possible rereflections with respect to the sides of the corner 
region of the space considered of a certain four fundamental wave processes, corresponding to the residues of the 
poles (4.7). Since these, the last ones, are not excited, by virtue of conditions (4.8), their rereflections are correspond- 
ingly also not excited (as regards rereflections inside corner regions with impedance boundary conditions see [ 16]). 

Thus, the conditions at infinity (1.6) can be satisfied using the four conditions (4.8), which are imposed 
on the eight constants C~ (n = 1, 2, 3, 4), contained in the general solution of the problem. The remaining 
four conditions required for a unique determination of all the constants must be obtained from the 
contact conditions (1.7). 

5. S A T I S F A C T I O N  OF T H E  C O N T A C T  C O N D I T I O N S  

Using the general solution given in Section 3, we will calculate the values of the physical parameters 
~± (0), *± ,  M±, F± occurring in the contact conditions (1.7), which will subsequently expressed in terms 
of  the limiting values of  the quantities 

dr" (r, + 0 ) ,  m = 0 ,  1, 2, 3, as r---)0 

Differentiating integral (2.1) we obtain, after chat3ging to integration along the contour y+ 

dr . (r, _+~,) = 2 - ~ T e o ×  (5.1) 
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x ~ e, xp(-ikrcosct)sino~cosmtx(S(ot+O)+S(-tx+eb))dct, m=O, !, 2, 3 
~,+ 

The limiting values of these integrals as r ~ 0 are governed by the behaviour of the integrand at the 
ends of the integration contour as Im tx ---> +** (see formula (3.13)). 

In order to estimate this behaviour, we will use the functional equations (2.5), which the function 
S(ct) satisfies, and we will write 

( L±(ct)) 2sinct ~ C~cos,_]a 
S(a:±O)+ S ( - a + O ) = S ( a + d p )  1-~ L~_'--~) J L_+(-tx)n=l (5.2) 

As Im ct ---> +**, the symbols of the boundary operators have the estimates 

1 i 
= :i: (1 + O(exp(-4 Im ¢t))) (5.3) 

L± (¢t) k 5 sin o~cos 4 t~ 

Hence 1 + L± (ct)/L±(--a) = O(exp(-5 Im ct)), and the first term on the fight-hand side of (5.2) makes 
no contribution to the limiting values of integrals (5.1), since, in view of the fact that the function S(cc) 
is bounded as Im ct = ** and is analytic inside the loop T+, when integrating this term the contour ¥+ 
can be contracted to a point. Simplifying the integrand in the remaining term using (5.3), we can obtain 

d m (1 ~p ~ (_ik)m+l 4 
l i m ~ / -  +O)j  =T- Po~, C~iimlm~(r), m=O, 1, 2, 3 (5.4) 
~ o  dr m ~ r "~9 (r' 7tk 5 n=t r-~O 

Iron(r)= I 
Y+ 

exp(-ikrcos ix)sin ¢t cos n+m-5 ffz/ct = 
21~i(-ikr ) 4-n-m 

( 4 - n - m ) !  
0, 

l~<m+n~<4 

m+n>~5 

(the integrals I,,m(r) are evaluated by making the replacement of variable t = cos ¢x and using the theorem 
of residues). Taking the limit in (5.4) we obtain 

lira (r, + 0 )  =+2(-i)mkm-4C~_mPo, re=O, 1, 2, 3 
r-~O dr m 

Hence, each of the constants C + has a clear physical meaning 

C~: = o]2pk4 ~+(0), C~ = t'°2pk3 ~ ( 0 )  
2P o 2iP o 

= + t°2pk2 t°2pk F+, 
C~ 2D±Po M+, C~ = 2iD±Po 

defining the values of the displacements, the angles of emergence, the moments of the forces and the 
forces on the edges of the plates. 

These relations sbow that the contact conditions (1.7) reduce to linear algebraic equations in the 
constants C~ (n = 1, 2, 3, 4) and in general can be written as the four lower rows of the matrix equation 
(4.9). For example, for conditions (1.10)-(1.13) we can obtain C~ = 0, C~ = 0 (rigid clamping), C~ = 
0, C~ = 0 (a hinged joint), C~ = 0, C~ = 0 (free ends), and D+C~ = D_~,  C~ = -C-a, C~ = 0 (a rigid 
joint). Hence, for these methods of fastening the edges of the plates to one another, the contact 
conditions can be reduced to very simple equations for the constants C~. Using these equations we 
can eliminate the four unknown constants, and system (4.9) can be reduced to a system of four finear 
algebraic equations in the remaining four constants C,,. The matrix elements in this system can be written 
in terms of integrals (4.10), which can be obtained numerically and in some cases analytically. 

After determining all the constants C~, the integral formula (2.1)with the transformant (3.12) gives 
the required solution of the problem, which will be unique for the specified incident wave (1.1), the 
chosen model of the plates (1.4) and the method by which they are fastened, fixed in the contact 
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conditions (1.7). For the contact conditions, without contradicting relation (1.9), this solution must satisfy 
the reciprocity relation (in the sense of  symmetry with respect to the angles of  incidence ~0 and 
observation ~p of  the wave pattern scattered at the junction). 

We would expect the above solution to be an effective method in investigations of the diffraction 
and scattering of sound waves by shells of complex shape, situated in an acoustic medium, since it requires 
solutions of a linear algebraic system of no higher than the eighth order, contains only the well-known 
special functions ya,(c 0 (the Malyuzhinets functions, see, for example, [10, 20]), and can be written in 
the form of a Sommerfeld integral, for which methods of  investigation have been developed both in 
the near field (kr < 1) [23], and in the far field (kr > 1) [10, 11, 16, 17, 24]. 

6. A P P E N D I X  

The uniqueness conditions. We will show that the diffraction problem formulated in Section 1, has a unique solution 
when 0 < arg k < rd2 for real values of the plate parameters, if condition (1.8) is satisfied. We will assume in the 
de "rlvation that all the derivatives of the required solution encountered in the boundary conditions and the Heimholtz 
equation have meaning. 

We will assume that the problem has one more solutionpl(r, 9), which satisfies the same conditions as the function 
p(r, 9). The function u(r, q~) ffi p(r, 9) -pl(r ,  9) must then satisfy the Helmholtz equation (1.2), the boundary 
conditions (1.3) and (1.4), the conditions on the rib (1.5), and the contact conditions (1.7), and must tend to zero 
asr--* + **, since the fields of geometrical acoustics for the functionsp(r, 9) andpl(r, 9) must obviously be identical. 
We multiply the Helmholtz equation for the function u (r, 9) by the complex-conjugate function u (r, ¢p) and integrate 
the expression obtained over the plane bounded region S~, the boundary of which Cen consists of sections which 
pass along these actual boundary surfaces 9 = ---~ and the arc of circles of small radius e and large radius R with 
centre at the point r ffi 0. Using Green's formula and separating the imaginary part in the result, we obtain the 
relation 

R • ~U 
Imk2~ ~ lu(r, cp)12rdrd{p+Im ~ ~'(r, ~p)~n(r, ~p)dx=0 (6.1) 

where 0/an denotes the operation of differentiation along the direction of the outward normal to the region S~, 
which dx is an element of length of the contour C~. In (6.1) we can take the limits as I~ --> 0, R --> +0% since the 
function u (r, ip) satisfies the conditions on the rib and at infinity uniformly with respect to the angular coordinate 
tp. The limiting relation contains contour integrals only along real boundaries ~p = -+O, 0 ~< r < +**, where we can 
write 0fdn = -+r-123Fd~p; now introducing the normal components of the displacement vectors of points on the plates 

~+(r) = ~ c0~pr 0u _ ~ ( r ,  + 0 )  (6.2) 

we obtain 

imk 2 +~+~ +** 
• I S lu(r, tp)12rdrdq~=Im ~ (~(r, ~)~+(r)+~(r, O)~_(r))dr (6.3) 

fD2P 0 - o  0 

Using the boundary conditions we express the functions u (r, __.O) in terms of the corresponding displacements 

u(r, + O ) = - D ±  - ~  ~_+(r) 

we substitute these relations into (6.3) and carry out integration by parts twice. This gives the equation 

lmk 2 +-+o 
- - "  I I lu(r, ¢p)12rdrdq~+U+ +U, =0 (6.4) 
o)2p 0-® 

in which the terms U± outside the integrals are defined by the expressions in parentheses in (1.8)• If the kinematic 
and dynamic plate contact conditions at the point r = 0 are such that inequality (1.8) is satisfied, it follows from 
(6.4) that the function u (r, q~) can only be identically zero everywhere in the region, which also proves the uniqueness 
of the solution of the diffraction problem in question. 

The reciprocity relation. Suppose G (r, r0) is Green's function of the problem formulated in Section 1, i.e. the 
function which is a solution of the inhomogeneous Helmholtz equation with the delta-function 8(r - r0) on the 
right-hand side, and satisfies the boundary conditions (1.3) and (1.4), the conditions on the rib (1.5), the contact 
conditions (1.7), and also tends to zero at infinity if Imk  > 0. The reciprocity property of the solution of the 
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diffraction problem is usually taken to mean symmetry of Green’s function with respect to a permutation of its 
arguments-the coordinates of the source and of the observation point 

G @I, r2) = G (r2, rr) 

where r1 and rr are two arbitrary points of the region. 
We will choose twa~ functions v(r, p) = G(r, rI) and w(r, (p) = G(r, r2) and apply to them the second Green’s 

formula 

in which the form of the region ,S, and its boundaries C, were described above when deriving the uniqueness 
condition. lhking the Hehnholtz equation into account, which the functions v(r, (p) and w(r, qr) satisfy, and also 
the conditions on the edge and an infinity, we obtain from (6.6) 

G(r,, r,)-G(rl,r2)=Z++Z_ 

Relation (6.5) will obviously be satisfied if the expression on the right-hand side of (6.7) is equal to zero. Using 
the boundary conditions, which the functions v(r, cp) and w(r, cp) satisfy when cp = +cP, and integrating by parts, 
the integrals Z* can be reduced to the form 

Z*L. hm(V*WT-V;W;+V;‘W;-VPW,) 
v* r-+0 

v =1 &J f -(r. k@), 
r acp W, = t $(r, *@)) 

and we then change from Green’s functions v(r, cp), w(r, (p) to the solutions for plane waves by taking the limit 

p(r, q. cp, ) = iim 4i 
G(r. cp. rmV on,) 

H$‘)(kr ) ’ 
m=l, 2, 

Tm300 “1 

where Z@(kr,) is the Hankel function. Hence the reciprocity relation leads to a condition which the solutions of 
the problem of plane..wave diffraction must satisfy for arbitrary values of the angles of incidence qri and cp1. By 
changing to the components of the displacement vector (6.2) we obtain (1.9). 

REFERENCES 

1. MAIXJZHINHTS, G. D., The exact solution of the problem of the diffraction of plane sound waves by a semi-infinite elastic 
plate. In Proceeakgs of the Fourth All-Union Acoustics Conference. Iza! Akad Nauk SSSR, Moscow, 1958. 

2. MALYUZHINETS. ‘G. D., Diffraction of sound and surface waves propagating along a semi-in6nite elastic plate. Yhu&Ak~~ 
Inst., 1971,15,80-96’. 

3. MALYUZHINETS, G. D. and TUZHILIN, A. A, Diffraction of a plane sound wave by a thin semi-in8nite elastic plate.. 
Zh whirl. Mat. Mat. Fiz., 1970,10,5,121~1227. 

4. LAMB, G. L., Diffmcbon of a plane sound wave by a semi-iniinite thin elastic p1ate.J. Awust. Sot. Amer., 1959,31,7,929-935. 
5. KOUZOV, D. P., Diffraction of a plane hydroacoustic wave at the boundary of two elastic plates. J+iM Mat. Me&, 1963, 

27,3,541-546. 
6. BHLINSKII, B. I!, KOUZOY D. F! and CHEI?I’!IOVA, V. D., Diffraction of acoustic waves by plates joined at a right angie. 

&ikl. Mot. Me&h., 1973,37,2,291-299. 
7. VESHHY V. A. and KOUZOV, D. I?, The effect of the medium on the vibration of plates joined at a right angle. Akust. Zh., 

1977,23,3,268-377. 
8. VESHEV, V. A. and :KOUZOV, D. I?, Piexural viirations of T-shaped joined plates in contact with a liquid.-. Zh., 1980, 

26,3,347-355. 
9. MALYUZHINEXS, G. D., An inversion formula for the Sommerfeld integral DOW. Akad Nauk SSSR., 1958, 118, 6, 

10991102. 
10. MALYUZHINHIS, G. D., Excitation, reflection and radiation of surface waves by a wedge with specified impedance faces. 

Dow. Ah& Nauk SSSR., 1958,121,3,436-439. 
11. TUZHILIN, A. A, Diffraction of a plane sound wave in a comer region, the faces of which are absoluteiy rigid and slippery 

and covered with thin elastic plates. Difl UMV., 1973,9,10, 1875-1888. 
12. OSIPOV, A. V., ‘l’wodimensional problems of diffraction by a wedge with high-order boundary conditions. kfnik St-pb. 

Univ. See 4. Fiz, Khim., 1993,4,81-85. 
13. OSIPOV A. V.. General solution for a class of diffraction problems. J. Phys. A.: Math Gen., 1994,27,2, L27-I32. 
14. OSIPOV, A V., On formulation of the high-order boundary conditions for stratified media. Pmt. 3rd Znt. Gong Air- and 

Structundom Soumf and Vi%~tiim, Montreal. Canada, 1994, Vol. 3,1635-1642. 



238 A.V. Osipov 

15. SHENDEROV, Ye. L., Radiation and Scattering of Sound. Sudostroyeniye, Leningrad, 1989. 
16. OSIPOV, A. V., The asymptotic representation of an acoustic field in a narrow angular region with impedance boundaries. 

Akust. Zh., 1990, 36, 516-522. 
17. OSIPOV, A. V., The Malyuzhinets transformation and the Sommerfeld integrals method in the theory of the diffraction of 

waves in corner regions. In Problems of Wave Diffraction and Propagation. St Petersburg, 1993, 25, 148-173. 
18. BREKHOVSKIKH, L. M., Waves in Multilayered Media. Nauka, Moscow, 1973. 
19. ZAVADSKII, V. Yu., Calculation of Wave Fields in Open Regions and Waveguides. Nauka, Moscow, 1972. 
20. OSIPOV, A. V., Calculation of Wave Fields in Open Regions and Waveguides. Nauka, Moscow, 1972. 
21. TUZHILIN, A. A., Theory of functional Malyuzhinets equations./. Diff. Urav., 1970, 36, 1, 116-121. 
22. MALYUGHINETZ, G. D., Das Sommerfeldsche Integral und die L6sung yon Beugungsaufgaben in Winkelgebieten. Ann. 

Phys., 1960, 6, 107-112. 
23. OSIPOV, A. V., Diffraction of a plane wave in a corner region with impedance boundary eonditions.AkusL Zh., 1991, 37, 

4, 733-740. 
24. OSIPOV, A. V., A uniform asymptotic formula for calculating the acoustic field in the region of the surface of an impedance 

wedge. Akust. Zh., 1990, 2, 332-337. 

Trans/ated by R.C.G. 


